Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131793

RESUMO

MicroGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As µG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.


Assuntos
Células Cromafins , Hominidae , Ratos , Animais , Diamante , Células Cromafins/fisiologia , Microeletrodos , Exocitose/fisiologia
2.
PLoS One ; 18(3): e0283736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000822

RESUMO

In studies exploring the potential for nanosecond duration electric pulses to serve as a novel modality for neuromodulation, we found that a 5 ns pulse triggers an immediate rise in [Ca2+]i in isolated bovine adrenal chromaffin cells. To facilitate ongoing efforts to understand underlying mechanisms and to work toward carrying out investigations in cells in situ, we describe the suitability and advantages of using isolated murine adrenal chromaffin cells expressing, in a Cre-dependent manner, the genetically-encoded Ca2+indicator GCaMP6f. Initial experiments confirmed that Ca2+ responses evoked by a 5 ns pulse were similar between fluorescent Ca2+ indicator-loaded murine and bovine chromaffin cells, thereby establishing that 5 ns-elicited excitation of chromaffin cells occurs reproducibly across species. In GCaMP6f-expressing murine chromaffin cells, spontaneous Ca2+ activity as well as nicotinic receptor agonist- and 5 ns evoked-Ca2+ responses consistently displayed similar kinetic characteristics as those in dye-loaded cells but with two-twentyfold greater amplitudes and without photobleaching. The high signal-to-noise ratio of evoked Ca2+ responses as well as spontaneous Ca2+ activity was observed in cells derived from Sox10-Cre, conditional GCaMP6f mice or TH-Cre, conditional GCaMP6f mice, although the number of cells expressing GCaMP6f at sufficiently high levels for achieving high signal-to-noise ratios was greater in Sox10-Cre mice. As in bovine cells, Ca2+ responses elicited in murine GCaMP6f-expressing cells by a 5 ns pulse were mediated by the activation of voltage-gated Ca2+ channels but not tetrodotoxin-sensitive voltage-gated Na+ channels. We conclude that genetically targeting GCaMP6f expression to murine chromaffin cells represents a sensitive and valuable approach to investigate spontaneous, receptor agonist- and nanosecond electric pulse-induced Ca2+ responses in vitro. This approach will also facilitate future studies investigating the effects of ultrashort electric pulses on cells in ex vivo slices of adrenal gland, which will lay the foundation for using nanosecond electric pulses to stimulate neurosecretion in vivo.


Assuntos
Cálcio , Células Cromafins , Animais , Bovinos , Camundongos , Cálcio/metabolismo , Camundongos Transgênicos , Células Cromafins/fisiologia , Glândulas Suprarrenais/metabolismo , Eletricidade , Células Cultivadas
3.
J Am Chem Soc ; 144(10): 4310-4314, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254807

RESUMO

Hofmeister effects have often been ignored in living organisms, although they affect the activity and functions of biological molecules. Herein, amperometry has been applied to show that the vesicular content, dynamics of exocytosis and vesicles opening, depend on the anionic species treatment. Compared to 100 µM Cl- treated chromaffin cells, a similar number of catecholamine molecules is released after chaotropic anions (ClO4- and SCN-) treatment, even though the vesicular catecholamine content significantly increases, suggesting a lower release fraction. In addition, there are opposite effects on the dynamics of vesicles release (shorter duration) and vesicle opening (longer duration) for chaotropic anions treated cells. Our results show anion-dependent vesicle release, vesicle opening, and vesicular content, providing understanding of the pharmacological and pathological processes induced by inorganic ions.


Assuntos
Células Cromafins , Exocitose , Ânions , Catecolaminas , Células Cromafins/fisiologia , Exocitose/fisiologia
4.
Pflugers Arch ; 473(11): 1775-1793, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510285

RESUMO

The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats' adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.


Assuntos
Células Cromafins/fisiologia , Hipertensão/fisiopatologia , Animais , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Hipertensão/metabolismo , Masculino , Fenótipo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Rianodina/metabolismo
5.
Neuron ; 109(19): 3119-3134.e5, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411513

RESUMO

Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.


Assuntos
Células Cromafins/fisiologia , Células Cromafins/ultraestrutura , Endocitose/fisiologia , Células Neuroendócrinas/fisiologia , Células Neuroendócrinas/ultraestrutura , Animais , Sinalização do Cálcio , Bovinos , Fusão Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Sistemas Computacionais , Dinaminas/fisiologia , Exocitose/fisiologia , Fusão de Membrana , Cultura Primária de Células , Vesículas Sinápticas/metabolismo
6.
J Neurosci ; 41(16): 3563-3578, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33664131

RESUMO

Synaptophysin (syp) is a major integral membrane protein of secretory vesicles. Previous work has demonstrated functions for syp in synaptic vesicle cycling, endocytosis, and synaptic plasticity, but the role of syp in the process of membrane fusion during Ca2+-triggered exocytosis remains poorly understood. Furthermore, although syp resides on both large dense-core and small synaptic vesicles, its role in dense-core vesicle function has received less attention compared with synaptic vesicle function. To explore the role of syp in membrane fusion and dense-core vesicle function, we used amperometry to measure catecholamine release from single vesicles in male and female mouse chromaffin cells with altered levels of syp and the related tetraspanner protein synaptogyrin (syg). Knocking out syp slightly reduced the frequency of vesicle fusion events below wild-type (WT) levels, but knocking out both syp and syg reduced the frequency 2-fold. Knocking out both proteins stabilized initial fusion pores, promoted fusion pore closure (kiss-and-run), and reduced late-stage fusion pore expansion. Introduction of a syp construct lacking its C-terminal dynamin-binding domain in syp knock-outs (KOs) increased the duration and fraction of kiss-and-run events, increased total catecholamine release per event, and reduced late-stage fusion pore expansion. These results demonstrated that syp and syg regulate dense-core vesicle function at multiple stages to initiate fusion, control the choice of mode between full-fusion and kiss-and-run, and influence the dynamics of both initial and late-stage fusion pores. The transmembrane domain (TMD) influences small initial fusion pores, and the C-terminal domain influences large late-stage fusion pores, possibly through an interaction with dynamin.SIGNIFICANCE STATEMENT The secretory vesicle protein synaptophysin (syp) is known to function in synaptic vesicle cycling, but its roles in dense-core vesicle functions, and in controlling membrane fusion during Ca2+-triggered exocytosis remain unclear. The present study used amperometry recording of catecholamine release from endocrine cells to assess the impact of syp and related proteins on membrane fusion. A detailed analysis of amperometric spikes arising from the exocytosis of single vesicles showed that these proteins influence fusion pores at multiple stages and control the choice between kiss-and-run and full-fusion. Experiments with a syp construct lacking its C terminus indicated that the transmembrane domain (TMD) influences the initial fusion pore, while the C-terminal domain influences later stages after fusion pore expansion.


Assuntos
Células Cromafins/fisiologia , Exocitose/fisiologia , Sinaptofisina/fisiologia , Animais , Animais Recém-Nascidos , Catecolaminas/metabolismo , Dinaminas/metabolismo , Dinaminas/fisiologia , Fenômenos Eletrofisiológicos , Exocitose/genética , Feminino , Fusão de Membrana , Camundongos , Camundongos Knockout , Gravidez , Cultura Primária de Células , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinaptogirinas/genética , Sinaptogirinas/fisiologia , Sinaptofisina/genética
7.
J Neurochem ; 158(2): 153-168, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33704788

RESUMO

γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.


Assuntos
Medula Suprarrenal/fisiologia , Células Cromafins/fisiologia , Comunicação Parácrina/fisiologia , Ácido gama-Aminobutírico/fisiologia , Medula Suprarrenal/citologia , Animais , Bovinos , Canais de Cloreto/metabolismo , Cricetinae , Glutamato Descarboxilase/metabolismo , Cobaias , Hidrocortisona/metabolismo , Imuno-Histoquímica , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Pregnanolona/farmacologia , Ratos , Receptores de GABA-A/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
8.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491666

RESUMO

Reduced expression of the plasma membrane citrate transporter INDY (acronym I'm Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.


Assuntos
Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/fisiologia , Sistema Simpático-Suprarrenal/fisiologia , Simportadores/genética , Simportadores/fisiologia , Glândulas Suprarrenais/anatomia & histologia , Glândulas Suprarrenais/fisiologia , Animais , Restrição Calórica , Catecolaminas/biossíntese , Linhagem Celular , Células Cromafins/fisiologia , Transportadores de Ácidos Dicarboxílicos/deficiência , Expressão Gênica , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Longevidade/genética , Longevidade/fisiologia , Malatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Atividade Motora/genética , Atividade Motora/fisiologia , Piridinas/farmacologia , Simportadores/deficiência
9.
Proc Natl Acad Sci U S A ; 117(43): 26985-26995, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046653

RESUMO

Current models emphasize that membrane voltage (Vm) depolarization-induced Ca2+ influx triggers the fusion of vesicles to the plasma membrane. In sympathetic adrenal chromaffin cells, activation of a variety of G protein coupled receptors (GPCRs) can inhibit quantal size (QS) through the direct interaction of G protein Gißγ subunits with exocytosis fusion proteins. Here we report that, independently from Ca2+, Vm (action potential) per se regulates the amount of catecholamine released from each vesicle, the QS. The Vm regulation of QS was through ATP-activated GPCR-P2Y12 receptors. D76 and D127 in P2Y12 were the voltage-sensing sites. Finally, we revealed the relevance of the Vm dependence of QS for tuning autoinhibition and target cell functions. Together, membrane voltage per se increases the quantal size of dense-core vesicle release of catecholamine via Vm → P2Y12(D76/D127) → Gißγ → QS → myocyte contractility, offering a universal Vm-GPCR signaling pathway for its functions in the nervous system and other systems containing GPCRs.


Assuntos
Catecolaminas/metabolismo , Células Cromafins/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Vesículas Secretórias/fisiologia , Potenciais de Ação , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Cultura Primária de Células , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais
10.
Biomed Res Int ; 2020: 9692503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964048

RESUMO

OBJECTIVE: Phosphoinositides play a regulatory role in clathrin-mediated endocytosis. However, their involvement in clathrin-independent endocytosis termed rapid endocytosis (RE), which is the mode of vesicle recycling during neurotransmitter release by transient fusion (known as kiss-and-run), has not been investigated. Here, we used patch-clamp recording of whole-cell membrane capacitance in adrenal chromaffin cells (ACC) to monitor changes of RE kinetics in response to pharmacological alteration of phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) level by phenylarsine oxide (PAO) or antibody against phosphatidylinositol 4-kinase (AbPI4K). RESULTS: We found that PAO and AbPI4K significantly abrogated RE kinetics. Infusion of PI(4,5)P2 through the patch pipette potentiated RE kinetics and reversed PAO- and AbPI4K-induced blockade of RE. Similarly, the application of the bifunctional thiol dithiothreitol (DTT) to PAO-treated cells completely prevented the inhibitory effect of PAO on RE. These findings indicate that PI(4,5)P2 is implicated in the signaling (mechanistic) process of RE in ACC.


Assuntos
Células Cromafins/metabolismo , Células Cromafins/fisiologia , Endocitose/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Arsenicais/metabolismo , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cromafins/efeitos dos fármacos , Clatrina/metabolismo , Ditiotreitol/farmacologia , Endocitose/efeitos dos fármacos , Cinética , Fosfatidilinositóis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Toxicology ; 444: 152543, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858065

RESUMO

The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 µM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 µM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Canais de Cálcio/fisiologia , Células Cromafins/efeitos dos fármacos , Zinco/toxicidade , Glândulas Suprarrenais/fisiologia , Animais , Cálcio , Células Cromafins/fisiologia , Masculino , Ratos Sprague-Dawley
12.
PLoS One ; 15(6): e0234114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516325

RESUMO

We previously reported that a single 5 ns high intensity electric pulse (NEP) caused an E-field-dependent decrease in peak inward voltage-gated Na+ current (INa) in isolated bovine adrenal chromaffin cells. This study explored the effects of a pair of 5 ns pulses on INa recorded in the same cell type, and how varying the E-field amplitude and interval between the pulses altered its response. Regardless of the E-field strength (5 to 10 MV/m), twin NEPs having interpulse intervals ≥ than 5 s caused the inhibition of TTX-sensitive INa to approximately double relative to that produced by a single pulse. However, reducing the interval from 1 s to 10 ms between twin NEPs at E-fields of 5 and 8 MV/m but not 10 MV/m decreased the magnitude of the additive inhibitory effect by the second pulse in a pair on INa. The enhanced inhibitory effects of twin vs single NEPs on INa were not due to a shift in the voltage-dependence of steady-state activation and inactivation but were associated with a reduction in maximal Na+ conductance. Paradoxically, reducing the interval between twin NEPs at 5 or 8 MV/m but not 10 MV/m led to a progressive interval-dependent recovery of INa, which after 9 min exceeded the level of INa reached following the application of a single NEP. Disrupting lipid rafts by depleting membrane cholesterol with methyl-ß-cyclodextrin enhanced the inhibitory effects of twin NEPs on INa and ablated the progressive recovery of this current at short twin pulse intervals, suggesting a complete dissociation of the inhibitory effects of twin NEPs on this current from their ability to stimulate its recovery. Our results suggest that in contrast to a single NEP, twin NEPs may influence membrane lipid rafts in a manner that enhances the trafficking of newly synthesized and/or recycling of endocytosed voltage-gated Na+ channels, thereby pointing to novel means to regulate ion channels in excitable cells.


Assuntos
Células Cromafins/fisiologia , Eletricidade , Glândulas Suprarrenais/citologia , Animais , Bovinos , Células Cultivadas , Células Cromafins/citologia , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Sódio Disparados por Voltagem/metabolismo , beta-Ciclodextrinas/farmacologia
13.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178443

RESUMO

Synaptic disruption and altered neurotransmitter release occurs in the brains of patients and in murine models of neurodegenerative diseases (NDDs). During the last few years, evidence has accumulated suggesting that the sympathoadrenal axis is also affected as disease progresses. Here, we review a few studies done in adrenal medullary chromaffin cells (CCs), that are considered as the amplifying arm of the sympathetic nervous system; the sudden fast exocytotic release of their catecholamines-stored in noradrenergic and adrenergic cells-plays a fundamental role in the stress fight-or-flight response. Bulk exocytosis and the fine kinetics of single-vesicle exocytotic events have been studied in mouse models carrying a mutation linked to NDDs. For instance, in R6/1 mouse models of Huntington's disease (HD), mutated huntingtin is overexpressed in CCs; this causes decreased quantal secretion, smaller quantal size and faster kinetics of the exocytotic fusion pore, pore expansion, and closure. This was accompanied by decreased sodium current, decreased acetylcholine-evoked action potentials, and attenuated [Ca2+]c transients with faster Ca2+ clearance. In the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS), CCs exhibited secretory single-vesicle spikes with a slower release rate but higher exocytosis. Finally, in the APP/PS1 mouse model of Alzheimer's disease (AD), the stabilization, expansion, and closure of the fusion pore was faster, but the secretion was attenuated. Additionally, α-synuclein that is associated with Parkinson's disease (PD) decreases exocytosis and promotes fusion pore dilation in adrenal CCs. Furthermore, Huntington-associated protein 1 (HAP1) interacts with the huntingtin that, when mutated, causes Huntington's disease (HD); HAP1 reduces full fusion exocytosis by affecting vesicle docking and controlling fusion pore stabilization. The alterations described here are consistent with the hypothesis that central alterations undergone in various NDDs are also manifested at the peripheral sympathoadrenal axis to impair the stress fight-or-flight response in patients suffering from those diseases. Such alterations may occur: (i) primarily by the expression of mutated disease proteins in CCs; (ii) secondarily to stress adaptation imposed by disease progression and the limitations of patient autonomy.


Assuntos
Células Cromafins/fisiologia , Exocitose/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Camundongos , Vesículas Secretórias/fisiologia , Transmissão Sináptica/fisiologia
14.
J Neurochem ; 152(1): 48-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587282

RESUMO

Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.


Assuntos
Células Cromafins/fisiologia , Vesículas Revestidas por Clatrina/fisiologia , Clatrina/fisiologia , Fosfatidilserinas/fisiologia , Animais , Células Cultivadas , Endocitose/fisiologia , Exocitose/fisiologia , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinaptotagmina I/genética , Sinaptotagmina I/fisiologia
15.
Acta Physiol (Oxf) ; 228(4): e13417, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31769918

RESUMO

AIM: It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS: Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS: Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION: We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.


Assuntos
Sinalização do Cálcio/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp/métodos
16.
Compr Physiol ; 9(4): 1443-1502, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31688964

RESUMO

Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, ß-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.


Assuntos
Doenças das Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/fisiologia , Células Cromafins/fisiologia , Doenças das Glândulas Suprarrenais/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia
17.
Sci Rep ; 9(1): 11545, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395918

RESUMO

Exposing adrenal chromaffin cells to single 150 to 400 ns electric pulses triggers a rise in intracellular Ca2+ ([Ca2+]i) that is due to Ca2+ influx through voltage-gated Ca2+ channels (VGCC) and plasma membrane electropores. Immediate delivery of a second pulse of the opposite polarity in which the duration and amplitude were the same as the first pulse (a symmetrical bipolar pulse) or greater than the first pulse (an asymmetrical bipolar pulse) had a stimulatory effect, evoking larger Ca2+ responses than the corresponding unipolar pulse. Progressively decreasing the amplitude of the opposite polarity pulse while also increasing its duration converted stimulation to attenuation, which reached a maximum of 43% when the positive phase was 150 ns at 3.1 kV/cm, and the negative phase was 800 ns at 0.2 kV/cm. When VGCCs were blocked, Ca2+ responses evoked by asymmetrical and even symmetrical bipolar pulses were significantly reduced relative to those evoked by the corresponding unipolar pulse under the same conditions, indicating that attenuation involved mainly the portion of Ca2+ influx attributable to membrane electropermeabilization. Thus, by tuning the shape of the bipolar pulse, Ca2+ entry into chromaffin cells through electropores could be attenuated while preserving Ca2+ influx through VGCCs.


Assuntos
Cálcio/metabolismo , Células Cromafins/efeitos da radiação , Eletroporação , Potenciais da Membrana/efeitos da radiação , Animais , Células CHO , Membrana Celular/efeitos da radiação , Permeabilidade da Membrana Celular/genética , Permeabilidade da Membrana Celular/efeitos da radiação , Células Cromafins/fisiologia , Cricetinae , Cricetulus , Estimulação Elétrica , Potenciais da Membrana/genética
18.
ACS Chem Neurosci ; 10(5): 2459-2466, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30892011

RESUMO

Adenosine triphosphate (ATP) is the main energy source for cellular metabolism. Besides that, ATP is a neurotransmitter and a cotransmitter that acts on purinergic receptors present either pre- or postsynaptically. Almost all types of secretory vesicles from any neuron or animal species contain high concentrations of ATP, being an essential factor in the accumulation of neurotransmitters. In this work, we studied the effects of ATP on quantum catecholamine release and vesicular storage in chromaffin cells. We combined three electrochemical methods: conventional amperometry with intracellular vesicle impact electrochemical cytometry and vesicle impact electrochemical cytometry. We found that extracellular ATP increased the released quantal fraction of catecholamine but not its vesicular content. Studying the dynamics of exocytosis events in ATP treated cells showed that ATP affects the release fusion pore. To elucidate the mechanisms of the observed ATP effects, cells and vesicles were pharmacologically treated with suramin (a purinergic blocker) and ARL-67156 (an antagonist of ecto-ATPases). The data indicate that the catecholamine content of vesicles increased compared to control after these drugs. Our data suggest that ATP acting on purinergic receptors increases the quantum releasable size through an increased fusion pore opening and that ARL-67156 and/or suramin protect the vesicle from neurotransmitter leakage by functioning as competitive inhibitors to ATP.


Assuntos
Trifosfato de Adenosina/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Agonistas Purinérgicos/farmacologia , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Suramina/farmacologia
19.
J Physiol ; 597(6): 1705-1733, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30629744

RESUMO

KEY POINTS: Tymothy syndrome (TS) is a multisystem disorder featuring cardiac arrhythmias, autism and adrenal gland dysfunction that originates from a de novo point mutation in the gene encoding the Cav1.2 (CACNA1C) L-type channel. To study the role of Cav1.2 channel signals in autism, the autistic TS2-neo mouse has been generated bearing the G406R point-mutation associated with TS type-2. Using heterozygous TS2-neo mice, we report that the G406R mutation reduces the rate of inactivation and shifts leftward the activation and inactivation of L-type channels, causing marked increase of resting Ca2+ influx ('window' Ca2+ current). The increased 'window current' causes marked reduction of NaV channel density, switches normal tonic firing to abnormal burst firing, reduces mitochondrial metabolism, induces cell swelling and decreases catecholamine release. Overnight incubations with nifedipine rescue NaV channel density, normal firing and the quantity of catecholamine released. We provide evidence that chromaffin cell malfunction derives from altered Cav1.2 channel gating. ABSTRACT: L-type voltage-gated calcium (Cav1) channels have a key role in long-term synaptic plasticity, sensory transduction, muscle contraction and hormone release. A point mutation in the gene encoding Cav1.2 (CACNA1C) causes Tymothy syndrome (TS), a multisystem disorder featuring cardiac arrhythmias, autism spectrum disorder (ASD) and adrenal gland dysfunction. In the more severe type-2 form (TS2), the missense mutation G406R is on exon 8 coding for the IS6-helix of the Cav1.2 channel. The mutation causes reduced inactivation and induces autism. How this occurs and how Cav1.2 gating-changes alter cell excitability, neuronal firing and hormone release on a molecular basis is still largely unknown. Here, using the TS2-neo mouse model of TS we show that the G406R mutation altered excitability and reduced secretory activity in adrenal chromaffin cells (CCs). Specifically, the TS2 mutation reduced the rate of voltage-dependent inactivation and shifted leftward the activation and steady-state inactivation of L-type channels. This markedly increased the resting 'window' Ca2+ current that caused an increased percentage of CCs undergoing abnormal action potential (AP) burst firing, cell swelling, reduced mitochondrial metabolism and decreased catecholamine release. The increased 'window' Ca2+ current caused also decreased NaV channel density and increased steady-state inactivation, which contributed to the increased abnormal burst firing. Overnight incubation with the L-type channel blocker nifedipine rescued the normal AP firing of CCs, the density of functioning NaV channels and their steady-state inactivation. We provide evidence that CC malfunction derives from the altered Cav1.2 channel gating and that dihydropyridines are potential therapeutics for ASD.


Assuntos
Potenciais de Ação , Transtorno Autístico/genética , Canais de Cálcio Tipo L/genética , Células Cromafins/metabolismo , Exocitose , Síndrome do QT Longo/genética , Sindactilia/genética , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Catecolaminas/metabolismo , Células Cultivadas , Células Cromafins/efeitos dos fármacos , Células Cromafins/fisiologia , Ativação do Canal Iônico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nifedipino/farmacologia , Mutação Puntual , Canais de Sódio/metabolismo
20.
J Neurosci Methods ; 311: 360-368, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253199

RESUMO

BACKGROUND: Quantal exocytosis of oxidizable neurotransmitters can be detected as spikes of amperometric current using electrochemical microelectrodes. Measurements of spike parameters indicate the maximal transmitter flux, flux duration, and amount of transmitter released from individual vesicles. Automated analysis algorithms need to reject spikes that overlap in time. In addition, many spikes are preceded by small amplitude "foot" signals, attributed to slow release of transmitter through a fusion pore. Accurate pre-spike baseline determination is essential for estimating fusion-pore duration and the amount of transmitter released through the fusion pore. NEW METHOD: We developed an estimation approach that is based on fitting a multi-exponential function to the data. Our previously described matched-filter algorithm is used to identify the sections of data to fit and provides seed values to facilitate convergence of the iterative fit. The new estimation algorithm includes overlap rejection, a two-step fitting procedure and a novel baseline estimation procedure. RESULTS: Histograms of spike parameters demonstrate excellent agreement of the new approach with manually computed parameters. COMPARISON WITH EXISTING METHODS: Parameter estimates generated using the new approach are closer to blind manual estimates than commonly used existing methods. The improved performance is due to better detection of valid spikes and rejection of overlapping spikes. Moreover, since the complete time course of the spike is fit to a function, more complete information about the spike time course is captured. CONCLUSIONS: The matched-filter seeded algorithm reliably rejects overlaps and estimates spike and foot signal parameters in a fully automated manner.


Assuntos
Eletrofisiologia/métodos , Exocitose/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Células Cromafins/fisiologia , Eletrofisiologia/instrumentação , Humanos , Análise dos Mínimos Quadrados , Microeletrodos , Reconhecimento Automatizado de Padrão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...